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ABSTRACT

The performance of common speaker verification (Sygtem vastly affected when speaker model trairsng
done in the speech sample that recorded done bglenee and the testing is done in another deViée.a major problem
of speaker verification system in multi-device eowment. In this paper we report the experimenti@drout on the
recently collected speaker recognition databasendaioali Language Speech Database (ALS-DB) a mmgtikl and
multichannel database to study the impact of devar@bility on speaker verification system. Thdlexted database is
evaluated with Gaussian mixture model and UniveBsatkground Model (GMM-UBM) and Mel - Frequency Gaal
Coefficients (MFCC) combined with prosodic featuessa front end feature vectors based speakeiicatidin system.
The impact of the device both matching and mismatckraining and testing has been evaluated in iedtépendent
manner. For matching condition of device we hawsébEqual Error Rate (EER).50% with minimum Detection Cost
Function (MinDCF) valué.1062and for mismatching condition of devices thatl8f70% with MinDCF value0.3425
The performance of the SV system has degraded dpmtely 11.00% due to mismatching condition of devices in text

independent speaker verification system.
KEYWORDS: GMM-UBM, MFCC, Multi-Sensor, Prosodic, Speaker \figation

INTRODUCTION

Automatic Speaker Recognition (ASR) refers to reizigg persons from their voice. The sound of esmbaker
is identical because their vocal tract shapesnlasjzes and other parts of their voice productioyans are different. ASR
System can be divided into either (1) Automatic &iee Verification (ASV) or (2) Automatic Speakeeftification (ASI)
systems. Speaker verification aims to verify whetha input speech corresponds to the claimed igerfipeaker
Verification is the task of determining whether ergon is who he or she claims to be (a yes/ nosegiSince it is
generally assumed that imposter (falsely claimesbker) are not known to the system, so it is aéferred to as an
Open-Set task [1].

The state-of-art speaker verification system ueebadaptive Gaussian mixture model (GMM) [2] withiversal
background model (UBM) or support vector machingNi$ over GMM super-vector [3]. Currently, SVM is erof the
most robust classifiers in speaker verificatiorg #&rhas also been successfully combined with GMNhtrease accuracy
[4, 5]. Mel-frequency Cepstral coefficients are moemmonly used feature vector for speaker vetificasystem. Supra-

segmental features like — prosody, speaking st@eatso combined with the cepstral feature to imerthe performance
[6]-

Till date, most of the speaker verification systeperates only in text dependent as well as a sisglesor (device)

environment. Multi-channel and multilingual speakerognition is the key to the development of spoti@logue systems
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8 Kshirod Sarmah & Utpal Bhattacharjee

that can function in multi-device environments rstyi In the multi-channel speaker verification teys the channel
factors and speaker factors play important butediffit roles which are combined in Joint Factor psial
(JFA).Multilingual speaker verification (MSV) systealso very important area of research like Indiae of the most
favorable multilingual countries of the world. Tiperformance of MSV found a little degrades due tenmatching
phonetic structure of different languages spokeithieysame speaker [7]. In this paper we concesti@igy on channels

affect in text independent speaker verificationeys

Channel compensation in the front-end processiryeages linear channel effects, but there is evilehat
handset transducer effects are nonlinear in nandeare thus difficult to remove from the featupe®r to training and
recognition [8]. Because the handset effects renmaithe features, the speaker’s model will represba speaker’s
acoustic characteristics coupled with the distogicaused by the handset from which the trainirepap was collected.
Speaker same likelihood the same speaker the a$febat log-likelihood ratio scores produced frdifferent speaker
models can have handset-dependent biases and .sCEhs is especially problematic when trying to use

speaker-independent thresholds in a system, be isase for the NIST SREs [3].

Poor-quality microphones introduce nonlinear disbor to the true speech spectrum. Quatieri & al} [8
demonstrate, by comparing pairs of same speech esggracorded with good- and poor-quality microplgnthat
poor-quality microphones introduce several spectrafacts, such as phantom formatitat occur at the sums, multiples
and differences of the true formants. Formant badiths are also widened and the overall spectrgdesimflattened which

affect in the speech features in speaker recognitystem.

The A/D converter adds its own distortion, and itheording device might interfere with a mobile paaadio-
waves. If the speech is transmitted through a telep network, it is compressed using lossy teclasguhich might have

added noise into the signal. Speech coding caradegpeaker recognition performance significaritdy fL1].

To evaluate the text independent speaker verifinatiystem in multi-sensor environment, a multidiagand
multi-sensor speaker recognition database has deeeloped and initial experiments were carried touevaluate the
impact of language variability on the performané¢he baseline speaker verification system [12, IiBthis work, we are

going to discuss how device variability affected gerformance of a SV system.
SPEAKER RECOGNITION DATABASE

In this section we describe the recently collecteedVulti-devices and Multilingual speech corpus nbme
Arunachali Language Speech Database (ALS-DB) [ABJnachal Pradesh of North East India is one oflitiguistically
richest and most diverse regions in all of Asiangdome to at least thirty and possibly as manfjfigsdistinct languages
in addition to innumerable dialects and subdialgébtyeof [14].To study the impact of device valipion speaker
recognition task, ALS-DB is collected in multi-degi environment. Each speaker is recorded for thilifferent
languages — English, Hindi and a local languagéchwhelongs to any one of the four major Arunackaiguages - Adi,
Nyishi, Galo and Apatani. Each recording is of fbutes duration. Speech data were recorded irllglaagross four

recording devices, which are listed in Table 1.
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Table 1: Different Type of Devices and Recordingcifications

Device SI. No Device Type Sampling Rate | File Format
Device 1 Table mounted microphone 16 kHz wav
Device 2 Headset microphone 16 kHz wav
Device 3 Laptop microphone 16 kHz wav

Device 4 Portable Voice Recorder 44.1 kHz mp3

The speakers are recorded for reading style of emsation. The speech data collection was donebioradory
environment with air conditioner, server and otbguipments switched on. The speech data was cotetritby 100 male
and 98 female informants chosen from the age gB@4p0 years. During recording, the subject was caskiaead a story
from the school book of duration 4-5 minutes foicevand the second reading was considered fordegprEach informant

participates in four recording sessions and theeegap of at least one week between two sessions.

FEATURE VECTORS
MFCCs Computation

The computation of the MFCCs is consists of sevstafies. The first stage is pre-emphasis followgdhie
short-time Fourier analysis on an overlapping Hangmwindow. After that, we can extract either thewpo or the
magnitude of the Fourier coefficient. Afterwardsfilterbank transformation is applied to transfothe signal into a
smooth spectrum representation close to the engaddphe speech signal. The output of the filtekbdren transform to
the log domain. Finally , to decorrelate and prmlthe cepstral coefficients we apply DCT. Thesfifink can be either

linear or mel scale. Mel scale that resembles tag avperson hears is applied here.

If the output of an M —channel filterbank as Y(ms1,2........... ,M, Then MFCCs are obtained as follows:
Co = X _[logY (m)]cos [T (m — 3] (1)

Here n is the index of the cepstral coefficiente Timal MFCC vector is obtained by retaining abd2t15 lowest
DCT coefficients.

In the final step, the Mel-spectrum plot@verted back to the time domain by using thie¥ahg formula:
Mel(f) = 2595*log10(1+f/700) (2)
Where f is linear frequency.

To emphasize the dynamic features of the speetimé the time derivativeA) and the time —acceleratioAX)

are usually computed. It is common to compute 1ZKFone Energy coefficient and its correspondikigaind (AA).
Prosodic Features

Prosodic features are the rhythmic and in intemati properties in speech, examples are voice fupdtal
frequency (F0), FO gradient, intensity and duratiBrnosody refers to non-segmental aspects of spéediding for
instance syllable stress, intonation patterns, lspgaate and rhythm. One important aspect of palgde that, unlike the
traditional short-term spectral features, it spamer long segments like syllables, words, and aittees and reflects

differences in speaking style, language backgrowethtence type, and emotions to mention a few. Alahge in
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10 Kshirod Sarmah & Utpal Bhattacharjee

text-independent speaker recognition is modelimgdifferent levels of prosodic information (instam¢ous, long term) to

capture speaker differences; at the same timde#tiares should be free of effects that the spezdkeroluntarily control.

The most important prosodic parameter is the fureddat frequency (or FO). Combining FO-related fesguwvith
spectral features has been shown to be effectsfgectally in noisy conditions. Other prosodic featufor speaker
recognition have included duration (e.g. pauseistizd, phone duration), speaking rate, formantshpand energy
distribution/modulations among others [16, 17,1 ]that study, it was found out, among a numbestbér observations,

that FO-related features yielded the best accufattgwed by energy and duration features in thideo.

Prosody features have also proven to be robushdannbisy and multi-channel environment. Therefthese

features show very great potential for the speaksdfication tasks.
GMM-UBM AS A CLASSIFICATION METHOD

The GMM-UBM approach for speaker verification systean be considered primarily as a four phase psce
At the first phase, a gender independent UBM modelgenerated which is a GMM that built based on the
Expectation-Maximization (EM) algorithm and usingewances from a very large population of speak&sThe target
speaker specific models are then obtained throhghatlaptation of mean from the UBM using the speskeaining
speech and a modified realization of the maximuposteriori (MAP) approach [3]. In the testing phaadast scoring
procedure is used in order to reduce the numberoafputations [3]. This involves determining the ti@pv scoring
mixtures in the UBM for each feature vectors anentitomputing the likelihood of the target speakedeh using the
score for its corresponding mixtures. The scoriracess is then repeated for all the feature vedtotise test utterance to
obtain the average log likelihood score for eachtrif UBM and the target speaker model. Finally, UBa&ed
normalization is performed by subtracting the likglihood score of the UBM from that of the targpeaker model. This

is firstly to minimize the effect of unseen datadaecondly to deal with the data quality mism&8ih

A GMM is a probabilistic model for density estin@atiusing a mixture distribution and is defined asedghted

sum of multi-variate Gaussian densities.
A GMM is a weighted sum of M compondensities is given by the form
P(x)) = XLy w; bi(x) )

Where x is a dimensional random vedigx), i =1,2...... M, is the component densities and i=1,2,....,M, is

the mixture weights.

The Gaussian Function can be definetieform

bi(9) = —5——exp{—3(r— 1) T (x - 1)} (4)

(2m)2 [g;|1/2
with mean vector pand covariance matriX; . The mixture weight satisfy the constraint thatl, w; = 1

The complete Gaussian mixture model is parametétizethe mean vectors, covariance matrices amturai

weight from all component densities.

These parameters can collectively representedeébgdtation:
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Text- Independent Multi-Sensor Speaker VerificationSystem 11

h={wup, X} for i=1,2 ..., M. (5)

In speaker verification system, each speaker careesented by such a GMM and is referred to byathove

model A.

For a given training vectors and a GMM configuratizve have to estimate the parameters of the GMNar the
best matches the distribution of the training femtuectors. The most popular and well-known metkanaximum
likelihood (ML) estimation.

The main purpose of ML estimation is to find thed®bparameters which maximize the likelihood of Gi&M

given the training data. For a sequence of T tngiviectors X= {X X, X3 X7} the GMM likelihood can be defined as

..........

PXIN) = ITi=1 p(xel2). (6)
The speaker-specific GMM parameters are estimajethé Expectation-Maximization (EM) algorithm using
training data spoken by the corresponding spedkiee. basic idea of the EM algorithm is, beginninghwéan initial

language modsl, to estimate a new modelsuch that P(X|1)> P(X| 1). The new model then becomes the initial model

for the next iteration and the process is repeaigiisome convergence threshold is reached [19].

On each EM iteration, the following re-estimatiamrfiulas are used which guarantee a monotonic isergathe

model’s likelihood value,

Mixture Weights:

w; = 21 pr(ilxe, 1) (7)

Means:

0 = z?;lpr(n_xt,x)xt (®)
Yi=1prlxed)

Variance (diagonal covariance):

2 _ ZteaprGlxedxf

2
i Y1 pr(ilxe) H; ©)

The a posteriori probability for component i is givby

— wibi(x)
AL wib(X)

pr(ilx,, 1) (10)

There are lots of reasons to consider in contrgstime of the standard MAP approaches to its itedrm.
The standard MAP technique is simply a single ttenawhile EM based result is iterative. A singleration assumes that
the mixture mean components vary in a completetieprendent manner [20], and consequently, one aesitegation

would be required to solve the MAP solution.
BASELINE SYSTEM

In this works, the baseline system, a speakeriwetibn system was developed using Gaussian Mixtlodel
with Universal Background model (GMM-UBM) based mtidg approach. A 39-dimensional feature vector wssd,

made up of 13 mel-frequency cepstral coefficientF@C) and their first order derivatives as well &sond order
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derivatives. The first order derivatives were apprated over three samples. The coefficients wenaeted from a speech
sampled at 16 KHz with 16 bits/sample resolutiorprA-emphasis filter H(z) = 1-0.97has been applied before framing.
The pre-emphasized speech signal is segmenteftante of 20 ms with frame frequency 100 Hz. Eaelmie is multiplied
by a Hamming window. From the windowed frame, FEE been computed and the magnitude spectrumesefiltwith a
bank of 22 triangular filters spaced on Mel-scal®d aconstrained into a frequency band of 300-3400 Haze
log-compressed filter outputs are converted to ttapsoefficients by DCT. The"epstral coefficient is not used in the
cepstral feature vector since it corresponds toethergy of the whole frame [14], and only 12 MFGdaefficients have
been used. To capture the time varying nature efsiieech signal, the first order and second orddvative of the
Cepstral coefficients are also calculated. Comigitie MFCC coefficients with its first order andcsed derivatives, we

get a 36-dimensional feature vector.

In the next phase, 6 dimensional prosodic featusetor consist of pitch, short time energy andfiitst and
second order derivativeagitch, Aenergy AApitch andAAenergy) that have been combined with the 36 démaal

MFCC features vector. As a result, we got a 42-dsman feature vectors.

Cepstral Mean Subtraction (CMS) has been appliealldeatures to reduce the effect of channel misman this
approach we apply Cepstral Variance Normalizati©oWN) which forces the feature vectors to follow&@ mean with

unit variance distribution in feature level solutito get more robustness results.

The Gaussian mixture model with 1024 Gaussian coequs has been used for both the UBM and speakaelmo
The UBM was created by training the speaker mod#t &0 male and 50 female speaker’'s data with 5aRsGian
components each male and female model with Expectitaximization (EM) algorithm. Finally UBM modé created by
pulling the both male and female models and findhaverage of all these models [20]. The speaeiels were created
by adapting only the mean parameters of the UBMgusiaximum a posteriori (MAP) approach with theadqe specific

data.

The detection error trade-off (DET) curve has bplatted using log likelihood ratio between the eiad model
and the UBM and the equal error rate (EER) obtafraul the DET curve has been used as a measutkefgrerformance

of the speaker verification system. Another measerd Minimum DCF values has also been evaluated.
EXPERIMENTS AND RESULTS

All the experiments reported in this paper areiedrout using the database ASL-DB described inice@.
An energy based silence detector is used to igeatifl discard the silence frames prior to featuteetion. Data from the
all devices have been considered in the presedy.sAll the four available sessions were considdogdhe experiments.
Each speaker model was trained using one compmetgos. The test sequences were extracted fromettte¢hree sessions.
The training set consists of speech data of lehgthseconds per speaker. The test set consispeetls data of length 15
seconds, 30 seconds and 45 seconds. The testrgainsomore than 3500 test segments of varyingtteagd each test

segment will be evaluated against 11 hypothesipedlsers of the same sex as segment speaker [22].
Experiments

In this experiment any type of language has beesidered for training the system from the speedh &tam

sessionl recorded that of devicel, device 2,de¥iemd device 4 separately and all four devices heeen considered
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separately for testing the system taken the tedfi@iz;n from the second, third or fourth session. Témult of the
experiments has been summarized in Table 2. FiuFggure 2, Figure 3 and Figure 4 show the DEVesiobtained for

the four devices in the speech database.

«+ SV system traninig with Devicel,testing with Devicel
=+ SV system traninig with Devicel,testing with Device2
=+ SV system traninig with Devicel,testing with Device3
"""""" SV system traninig with Devicel,testing with Device

Q0| -

E‘EER2=15.129,MinD‘CF=O.238"1
EER3=18.48,MinDCF=0.3255
- ’3ER4=18?§¢, WHD¢F=O3345’ I

Mss praoallity (in%9

N
o
(o]
(]

False Alarm probability (in %)

Figure 1: DET Curve for the Speaker Verification System for Training with Device 1 and Testing with Degice 1,
Device 2, Device 3 and Device 4 Respectively

90 SV system traninig with Device2,testing with Device2
SV system traninig with Device2,testing with Devicel
SV system traninig with Device2,testing with Device3
80 SV system traninig with Device2,testing with Device4
T T T T T T
| | | | | |
: : EER1:7.50,MinDO‘F=O.1062:
60 .| 1 EER=12.96MinDCF=0.1874, |
@ . ‘l : EER3=14.?O,MinD§F:O.1945
o ot | EER4=18.56,MinDCF=0.3265
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Figure 2: DET Curve for the Speaker Verification System for Training with (a) Local Language of Device2 and
Testing with the Same Language with Device 1, Dewd@, Device 3 and Device 4 Respectively
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SV system traninig with Device3,testing with Device3
= SV system traninig with Device3,testing with Devicel
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Figure 3: DET Curve for the Speaker Verification System for Training with (a) Local language of Device8 and
Testing with the Same Language with Device 1, Dewd@, Device 3 and Device 4 Respectively

SV system traninig with Device4,testing with Device4
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Figure 4: DET Curve for the Speaker Verification System for Training with (a) Local Language of Deviced and
Testing with the Same Language with Device 1, Dewd@, Device 3 and Device 4 Respectively

Table 2: EER and Min DCF Values for Speaker Verifiation System for
Training and Testing with Mismatching of Devices

Training Devices | Testing Devices | ERR% Ve ey Min DCF
Rate%
Device 1 9.36 90.64 0.1547
Device 1 Device 2 15.29 84.71 0.2387
Device 3 18.48 81.52 0.3255
Device 4 18.64 81.36 0.3345
Device 2 Device 2 7.50 92.50 0.1062
Device 1 12.96 87.04 0.1874

Impact Factor (JCC): 3.5987

NAAS Rating.89
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Device 3 14.20 85.80 0.1945
Device 4 18.56 81.44 0.3265
Device 3 8.33 91.67 0.1150
Device 3 Device 1 12.94 87.06 0.1971
Device 3 14.79 85.21 0.2533
Device 4 15.72 84.18 0.2675
Device 4 11.32 88.68 0.1617
Device 4 Device 1 16.40 83.60 0.2370
Device 2 17.14 82.86 0.2742
Device 3 18.70 81.30 0.3425

CONCLUSIONS

From the experimental point of view we come tadode that the performance of the speaker vetifinasystem
was better in matching condition of the device. Bue to mismatching of channels that recordingathkraining and
testing condition the performance of the SV systeas degraded. For matching condition of channel$owad EER rate
7.50% with minimum DCF valué.1062and for mismatching condition of channels we foltteR rate18.70%6 with
minimum DCF valué.3425 The performance of the SV system has degradespmately11.00% due to mismatching

condition of sensors.
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